/*
* Copyright 2024 The Ray Optics Simulation authors and contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import BaseFilter from '../BaseFilter.js';
import LineObjMixin from '../LineObjMixin.js';
import i18next from 'i18next';
import Simulator from '../../Simulator.js';
import geometry from '../../geometry.js';
/**
* Mirror with shape of a line segment.
*
* Tools -> Mirror -> Segment
* @class
* @extends BaseFilter
* @memberof sceneObjs
* @property {Point} p1 - The first endpoint.
* @property {Point} p2 - The second endpoint.
* @property {boolean} filter - Whether it is a dichroic mirror.
* @property {boolean} invert - If true, the ray with wavelength outside the bandwidth is reflected. If false, the ray with wavelength inside the bandwidth is reflected.
* @property {number} wavelength - The target wavelength if dichroic is enabled. The unit is nm.
* @property {number} bandwidth - The bandwidth if dichroic is enabled. The unit is nm.
*/
class Mirror extends LineObjMixin(BaseFilter) {
static type = 'Mirror';
static isOptical = true;
static serializableDefaults = {
p1: null,
p2: null,
filter: false,
invert: false,
wavelength: Simulator.GREEN_WAVELENGTH,
bandwidth: 10
};
populateObjBar(objBar) {
objBar.setTitle(i18next.t('main:meta.parentheses', { main: i18next.t('main:tools.categories.mirror'), sub: i18next.t('main:tools.Mirror.title') }));
super.populateObjBar(objBar);
}
draw(canvasRenderer, isAboveLight, isHovered) {
const ctx = canvasRenderer.ctx;
const ls = canvasRenderer.lengthScale;
if (this.p1.x == this.p2.x && this.p1.y == this.p2.y) {
ctx.fillStyle = 'rgb(128,128,128)';
ctx.fillRect(this.p1.x - 1.5 * ls, this.p1.y - 1.5 * ls, 3 * ls, 3 * ls);
return;
}
const colorArray = Simulator.wavelengthToColor(this.wavelength || Simulator.GREEN_WAVELENGTH, 1);
ctx.strokeStyle = isHovered ? 'cyan' : (this.scene.simulateColors && this.wavelength && this.filter ? canvasRenderer.rgbaToCssColor(colorArray) : 'rgb(168,168,168)');
ctx.lineWidth = 1 * ls;
ctx.beginPath();
ctx.moveTo(this.p1.x, this.p1.y);
ctx.lineTo(this.p2.x, this.p2.y);
ctx.stroke();
}
checkRayIntersects(ray) {
if (this.checkRayIntersectFilter(ray)) {
return this.checkRayIntersectsShape(ray);
} else {
return null;
}
}
onRayIncident(ray, rayIndex, incidentPoint) {
var rx = ray.p1.x - incidentPoint.x;
var ry = ray.p1.y - incidentPoint.y;
var mx = this.p2.x - this.p1.x;
var my = this.p2.y - this.p1.y;
ray.p1 = incidentPoint;
ray.p2 = geometry.point(incidentPoint.x + rx * (my * my - mx * mx) - 2 * ry * mx * my, incidentPoint.y + ry * (mx * mx - my * my) - 2 * rx * mx * my);
}
};
export default Mirror;